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The unsteady matched Stokes-Oseen solution 
for the flow past a sphere 
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The authors present the matched asymptotic expansion type of solution for the 
unsteady viscous incompressible flow past a sphere. Most of the analysis is developed 
under the assumption that a constant rectilinear velocity is suddenly imparted to a 
sphere in an otherwise quiescent infinite body of fluid. The Reynolds number based 
on that velocity is taken to be small, and the analysis is then extended to other transient 
flows that satisfy this requirement. Evidently in the unsteady cases under discussion 
one can recognize inner and outer regimes. The leading terms in the expansions 
representing the flow in these are governed by the unsteady Stokes and the hitherto 
unreported unsteady Oseen equations. The streamline patterns calculated show the 
‘birth’ of a ring vortex close to the equator and its gradual migration downstream 
and outwards. This result is also verified qualitatively by a crude experiment. 

1. Introduction 
The authors solve for the unsteady viscous incompressible flow past a solid sphere 

when a finite rectilinear velocity U is suddenly imparted to the sphere. The solution 
is obtained by the method of matched asymptotic expansions. Thus in the vicinity 
of the sphere the flow is governed by the unsteady. Stokes equation; as pointed out 
below, this has already been studied. The outer flow field is found to be governed by a 
hitherto unreported relationship. It will be called the unsteady Oseen equation, 
because in the absence of time variations it reduces to the classical Oseen equation. 

The solution obtained represents the entire process of transition from stagnancy to 
the steady state envisioned by Proudman & Pearson (1957). Throughout this process 
vorticity is generated a t  the solid surface and is transported away via convection and 
diffusion. Thus the streamline patterns in the outer field, presented in figures 2-4, 
show how the core of a ring vortex is ‘born’ close to the equator and then migrates 
downstream and outwards. When that core finally reaches infinity, one gets the well- 
known Oseen pattern shown in Schlichting (1960), Batchelor (1967) and other standard 
texts, which is in the form of an axial inflow through the wake that turns outwards as 
it reaches the sphere. Similarly, the streamline patterns in the inner field, depicted in 
figures 5 (u)-(a), demonstrate the birth and outward migration of a vortex ring from 
the sphere to infinity. The latter case corresponds to the symmetrical steady Stokes 
flow past a sphere. 

Since the motion starts from rest and since the unsteady Stokes and Oseen equations 
are linear, Laplace transform methods are used to account for the transience in both, 
However, the time co-ordinate is differently scaled in the two domains. Therefore a 
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new procedure is devised to match the transforms associated with the inner and outer 
fields. 

The Laplace transform of the Stokes solution yields the transform of the drag 
force, from which its time dependence can be obtained by inversion. The drag co- 
efficient is singular at the beginning of the motion and eventually reaches the value 
(6n)/Re where Re is the Reynolds number based on the velocity U and radius a of 
the sphere. We then generalize the above-mentioned transform relationship to obtain 
the time dependence of the drag for a sphere moving at  an arbitrary speed or the speed 
for an arbitrary time-dependent applied drag. This treatment is believed to be more 
concise than that developed in Yih’s (1 969) text, which is based on Fourier transform 
methods. This advantage is demonstrated by the immediate solution for the case of 
a sphere released from rest. However, we stress that these results are only by-products 
of the Stokes analysis. Our major aim is to present a picture of the entire flow field. 

2. Analysis 

problem is governed by the following differential equation: 
In  terms of dimensional time and space co-ordinates fixed to the sphere, the flow 

Here v is the kinematic viscosity and the operator d2 is defined by 

d2 = (a/ar‘)2+r’-2sin$(a/a$) (sin8)-1(a/a8), 

where (r’, 8 ,$)  are spherical co-ordinates with r’ = 0 at  the centre of the sphere. The 
stream function f is related to the velocity components in the (r’, 8) directions as 

follows: 

The boundary and initial conditions satisfied by $’ are 

ui = (r’zsin 8)-laf/ae, ui = - (r’ sin 8)-18+’/&’. 

yY = av /ar ’  = 0 for r’ = a, 0 G 8 g n, (2), (3) 

II.’ - - (4) Urt2 sin2 8H(t’) as r‘ 3 00, (4) 

I,IY = 0 for a < r’ < 00, t’= 0. (6 )  

Here U is the linear velocity imparted to the sphere and H(t’) is the Heaviside step 
function. Thus H is unity for t‘ > 0 and zero otherwise. We assume axisymmetric 
flow and vanishing velocity in the d direction. Condition (4) implies that the entire 
expanse of liquid undergoes acceleration. It is represented by body-force terms in 
the Navier-Stokes equations. However these body forces are uniform thus, like 
gravity, they do not affect the flow kinematics. 

It was shown by Proudman & Pearson (1957) that for steady-state motion the 
radial co-ordinate is differently scaled close and far from the sphere. The proposed 
analysis is based on a generalization of this assumption. Thus R and T are the radial 
and time co-ordinates in the far field, where they are defined in terms of length and 
time scales which are independent of a. The corresponding lower case co-ordinates r 
and t represent space and time variations in the near field. The stream function @ is 
approximated by different expansions in the inner and outer domains. Arguments 
are presented below which support the choices made, but it is the successful matching 
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which is taken as an indication that the co-ordinate scalings and expansions assumed 
are correct. 

Let the dependent and independent variables be normalized thus : 

$ = $'/Ua2, r = r'/a, R = r'U/v = rRe, t = t'v/a2, T = t'U2/v = tR:, 

where Re is the Reynolds number, defined by R, = Ua/v. It follows from the 
governing equation that close to the sphere the stream function is governed by 

(a /& - A2) A") = Re(conv), (6) 

where the bracketed superscript indicates 'inner'. Since this equation is used to 
generate just the first term of the inner expansion, the convective terms on the 
right-hand side need not be given explicitly. The non-dimensional operators appearing 
in (6) and below are defined by 

A2 = a%?, D2 E (v/U)2d2 = R L ~ A ~ .  

For the outer field the following holds: 

Numerous studies suggest that the inner expansion has the form 

$(S = $r)(r, 8,  t )  + O(Ri) (8) 

and that the first term is sin28 times a function of r and t .  The Laplace transform 
method is used to evaluate $f) as well as the leading component of the outer expansion 
which is developed below. We let Y:!)(r ,  8, s) and YP)(R, 8, S) be the transforms of 
~ y ) ( r ,  8, t )  and @P)(R, 8, T), respectively. In view of the initial condition ( 5 )  and the 
governing equation (6),  Yg") satisfies 

( S  - A2) A2Yt) = 0. 

Yy) = sin2 8{A (s) r2 + B(s) r-1+ C(s) rtK+(str) + D(s) rt14 (sir)}, 

(9) 

For the assumed dependence on 8 the most general solution of this equation is 

(10) 

where A ,  B, C and D are functions of s to be determined and I and K denote the 
modified Bessel functions of the first and second kind respectively. 

In view of (4),  D(s)  vanishes while A ( s )  is -is-'. B(s) and C(s) can be found by 
invoking (2) and (3) .  It is consequently found that the transform is given by 

- & r 2 - + - ( 3 + 3 s t + s ) - -  1 1  3 (1+srt)exp[-st(r-1)] 
s 2rs2 2rs2 

Its inverse is 

where 7 = ( r -  1)  (4t)-i. 
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FIGURE 1. Schematic sketch demonstrating the matching procedure 
between the inner and outer solutions. 

Expansion (8) can be expected to hold so long as the amount of vorticity in the 
field is not too large. Thus in the steady Stokes solution which is eventually attained, 
i.e. 

$9) w sin28{-&-2+$r-@-l} as t+m, (1la) 

the rotational component increases like r .  Indeed it was shown by Whitehead that 
if (6) is used to  generate $ f ) ( r ,  8,m) then the vorticity convection gives rise to an 
unbounded particular integral. However, the most important part of the process under 
discussion is the period before an appreciable amount of vorticity is generated. Thus 
for any finite t ,  $f) can be approximated by 

$?) - sin28{ - H ( t )  8r2 + $r-l[H(t)  + 3 ( 4 t / n ) 3  + a t ] }  as r -+ 00. ( 1 l b )  

This represents irrotational flow; the rotational components of $t) and hence also 
the higher-order terms of (8) decay like exp ( - yr2), where y is a constant. This implies 
that the vorticity is restricted to the vicinity of the sphere and that for finite t expansion 
(8) is valid throughout the flow field. 

These features are demonstrated in figure 1, which is also useful in explaining the 
ensuing analysis. In  the L-shaped region adjacent to the r and t axes, the inner solution 
is valid. (This is symbolic. We do not suggest that the region of validity has this 
precise geometry.) Away from this region the inner solution is singular and there the 
outer solution, which is constructed below, prevails. It is assumed that the domains 
of validity of the two overlap as shown. 

Closer examination of (1 1) reveals that the rotational part of $f) becomes sizable 
if both r and t are increased indefinitely along the path r = Ctt ,  where C is a positive 
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finite constant. At the end of these paths (8) ceases to hold and it is in this region that 
an outer expansion $(o) is constructed. We assume that the outer radial co-ordinate 
is that adopted by Proudman & Pearson; their solution is recovered here as a special 
case. Once the radial 'stretching ratio' has been set, the time co-ordinate follows from 
the nature of the paths in the r, t domain leading to the region of non-uniformity. 

We now solve for the stream function in the outer domain. The appropriate 
expansion is 

This can be deduced by recasting the solution for yVi) in terms of R and T and then 
rearranging it as a series in descending orders of Re. Thus, as might be expected, the 
term representing a uniform irrotational stream dominates. However, it is the 
deviation from uniformity and irrotationality which is of interest. It can indeed be 
shown that the first term in (12) satisfies (7).  The term representing the deviation 
O(R;l) is governed by the hitherto unreported relationship 

(13) 

in which X is the Cartesian co-ordinate defined by (X, SZ)  = R(cos 8,  sin 8) .  This will 
be called the unsteady Oseen equation. Unlike its steady counterpart, it represents 
not only the diffusion and convection of vorticity, but also temporal variations in that 
quantity. Indeed ( 5 )  implies that there is no vorticity initially. It is generated as the 
process progresses. If it is assumed that a steady state is eventually attained, then 
$(O)(R, 8, T )  approaches the Oseen solution as T is increased. 

As a first step in the construction of the solution for the stream function, the onter- 
field vorticity is evaluated. As explained, for any finite t the vorticity is negligible 
in the outer field. Hence the following initial contition will be assumed to hold: 

I,W -BR,2R2sin28+Relllr~l(R,8,T), T > 0. (12) 

(0' + a/aX - a/aT) Dz@?i = 0, 

D2$'Ol(R, 0,O) = 0. (14) 

(D2+a/aX-8)D2Y!! l  = 0. (15) 

By Laplace transforming (13) one gets 

Matching considerations which are invoked below suggest that D2Y-'L"{ is proportional 
to sin28 times a function of R and S. The most general solution of (15) that has this 
form and vanishes at infinity is 

D?P"€"{ = P(S)exp[-&R(c-p)](I  + 2 / R c ) ( 1  -p2 ) ,  (16) 

where ,u = cos8, 5 = (4S+ l ) 4  and P(S)  is a constant. The last quantity is ex-aluated 
by noting that the relationship 

holds between the two types of Laplace transform and that it is the same dependent 
variable $ which is sought in both the inner and the outer field. This implies that the 
following relationships hold : 

SR: = s, ~ y r ,  e, s) = ~'(0) (RIR,, 0, s) R;Z. (1% (18) 

The last two eqnntions together wit'h the relationship R = rR, enable one to match 
the right-hand side of (16) with the Lqlace transform of the vorticit'y associated 
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with the inner field, as given by ( loa) .  The resulting solution for the vorticity is thus 
found to be 

Note that the matching requirements as enforced do not yield a unique solution 
for P(8). For example, these could be satisfied by setting P(S) = -3/(4S)#. This 
non-uniqueness reflects the fact that the matching expressed in terms of (R,r) and 
( 8 , s )  is really applied along the paths T = Ct8 shown in figure 1. However, the outer- 
field vorticity is a solution of an initial-value problem. It embodies the initial condition 
(14), which was invoked as well as one end condition, namely the requirement that the 
vorticity should be finite for R + w  a t  any value of T. The matching along the path 
T = Ct8 does not reflect the other end condition. In  particular, it does not ensure 
that the outer-field vorticity matches that associated with the inner field for t 3 00, 

i.e. that the outer Oseen flow matches the steady inner Stokes solution. By employing 
the well-known property of Laplace transforms that 

limmP?i(R, 8, S) = Ijr?i(R, 8, a), 

one can show that with our choice of P(S) as given by (1 6 a )  this requirement is satisfied. 
Rather than go through the lengthy process of integrating (16n)  we shall show 

that the solution 

S-0 

meets the conditions of the problem. Here the In+i are modified Bessel functions of 
the first kind while the P, are Legendre polynomials. The integrals of the latter 
functions satisfy 

where the differential operator in 8 appears also in the definition of D2. Therefore 
substituting from (19) into (16a) shows that the latter is satisfied. In this verification, 
use is made of the relationship 

which is obtained by straightforward integration of the well-known equation 

m 

It is then noted that for p = - 1 every term in the summation vanishes while the 
other two expressions on the right-hand side of (19) cancel one another. For p = 1 
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all terms in the summation vanish except the first. However, for n = 0, the integrals 
with respect to 5 inside the curly brackets can be easily evaluated by expressing 
I&Z) as (2n/Z)* sinh 2. It can thus be shown that the transform satisfies 

Y?i(R, 0, S) = YLOl(R, n, S )  = 0, (2319 (24) 

which implies that the axis of symmetry constitutes a streamline. 
By inverting the right-hand side of (19) one gets 

$!?; = #( 1 + p) H ( t )  - #(nT)-t exp (+pR - aT - R2/4T) 

- 2 exp (&PI?) joT (nS)-+ exp ( - $S - R2/4S) d S  

- &R exp (4pR) /* (nS)-t exp ( - 4s - R2/4S) d S / S  
0 

d + # exp ( - 9R) {exp ( - t T )  [2(T/n)* exp ( - R2/4T) 

- (T + R) exp (43  + 4T) erfc (4RT-4 + 4T&)]} 

F,(R, T )  = /’ ((R2t2/4T2- +T - $)I,++(+RC) exp ( - R2t2/4T) tn+* 
0 

+ (R2/4E2T2 - BT - $) I,++(R/2t) exp ( - R2/4Tt2) gn-&} d t .  

The reader can easily check that the solution satisfies the following relationships: 

lim @LO; = $ ( 1 + p ) { 1 - e x p [ - ~ R ( 1 - p ) ] } ,  lim @?i = 0. 
T+W T+O 

Consequently it indeed represents the transition from stagnancy to the steady flow 
field described by Proudman & Pearson’s solution. 

3. Discussion 

expression for the drag: 
By integrating the stresses over the sphere one gets the following well-known 

f ’ ( t )  = p F / 0 v ( [ p - 2 $ ]  ~ o s O + [ ~ ~ + ~ ( - - - ) ]  a u8 sin0) 2nsinOdO. (26) 
r= 1 
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In  this equation p is the fluid density while u, and ue are the dimensionless velocity 
components in the indicated directions normalized with respect to U.  The pressure p 
is normalized with respect to pU2/a. 

Clearly it is the inner-field values which should be substituted into the right-hand 
side of (26) in order to evaluate f ( t ) .  Within the framework of the approximation 
adopted, u, and uo are found as space derivatives of the only available component 
of I++@), namely $:’. The pressure term p is taken to be the sum $ + p ,  where $ is the 
solution of 

and fj  is the pressure field balancing the inertia of the entire expanse of liquid acceler- 
ating with respect to the sphere. It follows from these relationships together with (6) 
that only the irrotational component of $c’ contributes to the pressure term in the 
integral of (26), the rotational component of $f) contributing only to the other terms 
in that integral. The integration is more easily carried out in terms of the transform 
Yf) rather than $f). This yields for P(s),  the transform off(t), 

(3 + 383 + 8) P(s) = ( 2 4 -  
pU2a2 

Re8 

for the case of sphere at rest which is suddenly given a velocity U .  When the velocity 
is v( t )  U the relationship between its transform V(s)  and that of the force is 

ne 

This embodies a large class of drag-velocity relationships. Two of these will be re- 
covered here. 

When the time-dependent velocity is represented by a step function, the force is 
given by 

where 8(t)  denotes the Dirac delta function. 
Conversely, when the force is represented by a step function the velocity is 

1 
[1 - exp (a2t) erfc ( a t $ ) ]  -- [1 - exp (P2t) erfc (,&+)I 

P 
where U is the ultimate value of the velocity and is obtained from Stokes’ relationship 
and the parameters a and /3 are given by 

a = #(3-53), p = $(3+53). 

We have demonstrated how easily (29a) yields the time-dependent drag or velocity 
when the other variable is a prescribed function of time. But this interrelationship 
holds only when w( t )  satisfies two conditions. First, its maximum value must be finite, 
so that the Reynolds number based on U is indeed small. Second, v must eventually 
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FIGURE 2. Birth of a ring vortex shortly after a sphere 
impulsively started from rest ; T = 0.1. 

attain a terminal value of either zero or unity and the time scale 7 characterizing the 
transition period must be O(a2/v)  or smaller. To demonstrate the significance of the 
last requirement, let the dimensionless time be redefined thus: t = t'/7. Owing to  this 
rescaling, the first terms on the left-hand sides of (6) and (7),  which represent the effect 
of transience, must be multiplied by a2/7v. If 7 is indeed small, these dominate the 
effect of convection, which is a t  most O(R,). I n  such cases, the ordering process under- 
lying the proposed analysis is valid. It clearly ceases to be so if a 2 / n  is O(R,) because 
then the effects of convection and transience in (6) are of similar orders of magnitude. 

The second condition imposed on v affects the nature of the far field. Recasting the 
argument of v such that it reflects the second stipulation gives 

TJ = (3 for t 7v/a2, whence v = { "b"), 
depending on the terminal value of v .  Thus the outer solution constructed here for 
v = H ( t )  holds for all cases in which the sphere attains a steady constant velocity. 
Hence the far-field solution expressed in terms of R and T is insensitive to  the detailed 
manner in which that velocity is attained. The case of a suddenly applied force serves 
as an example. Indeed, when rewritten in terms of T ,  (31) expresses a step-function 
dependence, although in effect, or in terms of t ,  the terminal velocity is acquired 
gradually. On the other hand, if the sphere is moved and stopped within a time span 
O ( T ) ,  then $(*) vanishes identically. I n  such cases the amount of vorticity attained 
is finite and hence, as explained, the inner solution is non-singular throughout. 

I n  figures 2-4 the streamline patterns of the disturbed outer flow, as represented 
by $?; and defined by ( 2 5 ) ,  are plotted for T = 0.1, 0.5, 1, 5, 10, 15, 20 and for T-too. 
Note that the flow pattern is independent of the Reynolds number. I n  these figures, 
the radius of the sphere is small and equal to the Reynolds number. Initially the dis- 
turbance is in the form of a vortex ring of low intensity located a t  the immediate 
vicinity of the sphere. As time progresses the vortex becomes more intense and its 
core moves downstream and away from the axis of symmetry. When ultimately a 
steady state is attained, as T ir 00, thestreamline pattern assumes the form envisaged 
by Oseen (figure 4). Here the core of the vortex ring is a t  infinity, the flow pattern a t  a 
large distance upstream resembling that for a simple source situated at  the origin. To 
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FIGUB,ES 3(c, a). For legend see next page. 
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FIQURE 3. Streamline pattern in the outer field for transient flow past a sphere at 

(a) T = 0.5, (b)  T = 1, (c) T = 5 ,  (d) T = 10, (e) T = 15 and (f) T = 20. 
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FIUURE 4. Streamline pattern of steady outer Omen flow (as reproduced by Schlichting 1960). 

compensate for such outward flow there is an inward flow towards the sphere down- 
stream. The turning of the streamlines from outward flow downstream to inward 
flow upstream marks the boundary of a wake starting a t  the sphere and extending to 
infinity downstream. 

In  a similar manner the transience of the disturbed inner flow field $f) given in (1 1) 
from stagnancy onwards is depicted in figures 5(a)-(d) for t = 0.1, 0.5, 1 and 2. It 
should be noted that because of the nature of the inner solution, where convection is 
neglected, the streamlines are symmetric with respect to the plane 0 = 471 and do not 
depend on the direction of motion. For this reason it is sufficient to draw the flow 
field on only one quadrant. The streamline pattern is plotted in a co-ordinate system 
(x, w )  = r(cos 8, sin 0) where the sphere surface is defined by r = 1. For small t the 
streamline pattern demonstrates the 'birth' of a vortex ring at the sphere which 
migrates outwards along 0 = in. For t+m the vortex reaches infinity and the flow 
field is given by the classical Stokes solution given in (1 1 a) excluding the uniform-flow 
term. 

We conclude this analytical presentation with a rather crude qualitative experiment 
which confirms some of the theoretical results. To simulate the model considered in 
the analysis, a metal sphere of radius 1 cm was suspended by an inextensible cord 
in a tank full of glycerine. At a certain instant, the cord was pulled sharply by hand 
such that the sphere instantaneously attained a velocity of approximately 0.8 cm/s. 
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FIGURE 6. Streamline pattern in the inner field for transient flow peat 
a sphere at (a) t = 0.1, (b) t = 0.5, (c) t = 1 and (a) t = 2. 
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The Reynolds number based on this velocity, the viscosity of the glycerine and the 
sphere diameter is about Re = The glycerine contained air bubbles and the 
meridional plane was appropriately illuminated. By using these tracers in conjunction 
with a camera, it was possible to obtain the trajectories (pathlines) of the illuminated 
bubbles. A photograph taken immediately after motion commenced with an exposure 
time of 2 s  is shown in figure 6 (plate I ) .  The resemblance between the analytical 
solution for the inner flow field and the crude experiment is obvious, both indicating 
outward migration of a vortex ring. 

The experimental verification which transformed this work from a piece of specu- 
lative mathematics to realistic fluid mechanics was carried out by our colleague Dr 
J. Shlien. Numerous discussions were carried out by the authors with another colleague, 
Professor G. Dagan, and these left a considerable imprint on this work. The authors 
thank both. 
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FINJRE 6. Pliotograpli of streamline pattern in the inner field. 
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